Some Tricks in Synthetic Geometry

Matthew Brennan
brennanm@mit.edu

1 Introduction

These notes outline a few basic synthetic methods to approach geometry problems on Olympiads. The solution outlines are sketches intended to emphasize motivation more than rigour. In particular, they do not deal with configuration issues and special cases. The accompanying handout includes a few geometry facts and theorems that are useful to know and also worthwhile exercises to work through an prove yourself. Some of the more useful of these facts are highlighted in Section 6.

2 Exhaust the Diagram

Sometimes it is tempting with geometry problems to immediately start guessing what magic point, line or circle to draw in the diagram leads to an elegant short solution. Before doing this, it is worthwhile to make sure that the problem actually needs something new. Oftentimes, the problem statement already has introduced all parts of the diagram that the most straightforward solution will need. In these cases, making sure you figure out everything you can with what you are given is much more productive than adding points to the diagram. Here are some things to try:

1. Angle Chasing: Given your knowledge of similar triangles and cyclic quadrilaterals in the diagram, find all angle relationships you can in the diagram. This is an essential step in almost all Olympiad geometry problems.
2. Length Chasing: Many problems can be solved by alternating between angle and length chasing - using some length relationships to find a new cyclic quadrilateral or pair of similar triangles and subsequently making use of whatever new angle relationships this yields. Here are some approaches to length chasing:
(a) Similar Triangles: These arise in many different contexts. One common way is spiral similarity: If $O A B$ and $O C D$ are similar triangles with the same orientation, then so are $O A C$ and $O B D$.
(b) Power of a Point: If $A B$ and $C D$ meet at the point P then $P A \cdot P B=P C \cdot P D$ if and only if $A B C D$ is cyclic.
(c) Menelaus and Ceva: Given a triangle $A B C$, let the points D, E and F be on lines $A B, B C$ and $A C$, respectively. Then

$$
\frac{A D}{D B} \cdot \frac{B E}{E C} \cdot \frac{C F}{F A}=1
$$

if and only if D, E and F are collinear or $C D, A E$ and $B F$ are concurrent (depending on how many of D, E and F are on the sides of $A B C)$.
3. Work Backwards: Assuming the result is true, what else would have to be true? Can you show any of these implications without assuming the result? Can you use any of these intermediary results to solve the problem?
Here are some examples of problems that can be solved by exhausting the diagram as given in the problem statement, without adding any drastically new points. The first two examples need no new points at all.

Example 1. (Russia 2013) Acute-angled triangle $A B C$ is inscribed into circle Ω. Lines tangent to Ω at B and C intersect at P. Points D and E are on $A B$ and $A C$ such that $P D$ and $P E$ are perpendicular to $A B$ and $A C$ respectively. Prove that the orthocentre of triangle $A D E$ is the midpoint of $B C$.
Solution. If M is the midpoint of $B C$, then $\angle P M B=\angle P D B=90^{\circ}$ and thus $P M B D$ is cyclic. Now $\angle B D M=\angle B P M=90^{\circ}-\angle C B P=\angle B A C$. Thus $D M$ is perpendicular to $A C$. Similarly, $E M$ is perpendicular to $A B$.

Example 2. (CMO 2014) The quadrilateral $A B C D$ is inscribed in a circle. The point P lies in the interior of $A B C D$, and $\angle P A B=\angle P B C=\angle P C D=\angle P D A$. The lines $A D$ and $B C$ meet at Q, and the lines $A B$ and $C D$ meet at R. Prove that the lines $P Q$ and $P R$ form the same angle as the diagonals of $A B C D$.
Solution. Angle chasing gives that $\angle D P A=\angle D C B$. Now note that $Q D P B$ and $R A P C$ are cyclic. Thus $\angle D P Q=\angle D B Q=\angle D B C$ and $\angle R P A=\angle D C A$. Now note that $\angle D P R=$ $\angle D C B-\angle R P A=\angle D C B-\angle D C A=\angle A C B$. Thus $\angle Q P R=\angle Q P D+\angle R P D=\angle D B C+\angle A C B$ which implies the result.

This next example succumbs easily to working backwards from the desired result.
Example 3. (IMO $2004 \not \# 1$) Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N respectively. Denote by O the midpoint of the side $B C$. The bisectors of the angles $\angle B A C$ and $\angle M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.
Solution. The result is true if and only if $\angle B M R=\angle C N R$ since then the angles to segments $B R$ and $R C$ at the intersection of the two circles will be supplementary. This occurs if and only if $A M R N$ is cyclic. Since R lies on the bisector of $\angle B A C, R$ must lie on the perpendicular bisector of $M N$. However, we know this is true since the angle bisector of $M O N$ is the perpendicular bisector of $M N$. Running this argument in reverse yields a solution.

The next problem really illustrates the power of looking for similar triangles and stopping to think about what is already in the diagram before trying to introduce new points.
Example 4. (ISL 2005 G3) Let $A B C D$ be a parallelogram. A variable line g through the vertex A intersects the rays $B C$ and $D C$ at the points X and Y, respectively. Let K and L be the A-excenters of the triangles $A B X$ and $A D Y$. Show that $\angle K C L$ is independent of the line g.
Solution. Angle chasing gives that $\angle A L D=\angle K A B=\angle B A X / 2$ and $\angle D A L=\angle B K A=$ $\angle A D Y / 2$. Therefore triangles $A D L$ and $K B A$ are similar which implies that $A B / B K=D L / A D$ and therefore $D L / C D=B C / B K$. Since $\angle C D L=\angle C B K=90^{\circ}-\angle A D C / 2$, it follows that triangles $C D L$ and $K B C$ are siimilar. Now it follows that $\angle K C L=360^{\circ}-\angle B C D-\angle D C L-\angle B C K=$ $180^{\circ}+\angle C D L-\angle B C D=180^{\circ}-\angle B C D / 2$ which is independent of g.

These next two problems involve primarily length chasing. Both also require introducing the orthocenter of the described triangle. However, in both cases, this is just the intersection of altitudes already given in the problem statement.

Example 5. (Russia 2005) In an acute-angled triangle $A B C, A M$ and $B N$ are altitudes. A point D is chosen on arc $A C B$ of the circumcircle of the triangle. Let the lines $A M$ and $B D$ meet at P and the lines $B N$ and $A D$ meet at Q. Prove that $M N$ bisects segment $P Q$.

Solution. Assume without the loss of generality that D is on arc $A C$ not including B. Let H be the orthocenter of $A B C$. Since $A D C B$ is cyclic,

$$
\angle P A N=\angle D A C=\angle D B C=\angle Q B M
$$

Also, it follows that

$$
\angle N A H=90^{\circ}-\angle A C B=\angle M B H
$$

Since $H P \perp A N$ and $H Q \perp B M, P A N$ is similar to $Q B M$ and $N A H$ is similar to $M B H$. Therefore

$$
\frac{P M}{M H}=\frac{P M / B M}{M H / B M}=\frac{Q N / A N}{N H / A N}=\frac{Q N}{N H}
$$

If X denotes the midpoint of $P Q$, then

$$
\frac{P M}{M H} \cdot \frac{N H}{Q N} \cdot \frac{Q X}{X P}=1
$$

and by Menelaus' Theorem applied to triangle $H P Q$, points X, M and N are collinear.
Example 6. (ISL $2008 G 4$) In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the points A and F and tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

Solution. This problem is straightforward with power of a point and does not require introducing any new points other than the orthocenter H of $A B C$ and foot of the perpendicular from A to $B C$, which are already implicitly present. Relating our goal to angles already in the diagram reduces the problem to showing that $\angle Q F B=\angle P E C$. By power of a point $B Q^{2}=B P^{2}=B F \cdot B A$ and triangles $Q F B$ and $A Q B$ are similar. Therefore it suffices to show that $\angle P E C=\angle A Q C$ which is equivalent to $A Q P E$ being cyclic. By power of a point we now have

$$
C P \cdot C Q=B C^{2}-B P^{2}=B C^{2}-B F \cdot B A=B C^{2}-B D \cdot B C=C D \cdot C B=C E \cdot C A
$$

Therefore $A Q P E$ is cyclic and we are done.

3 Completing the Diagram

As seen in the last few examples in the previous section, it is often useful to introduce some points implicit in the problem statement, such as intersection points, triangle centers and projections. A large number of Olympiad geometry problems can be solved by (1) exhausting the diagram and (2) in this way "completing the diagram". This is a vague heuristic and can take many forms, which are impossible to characterize in a single broad stroke. Nonetheless, here is an attempt at some intuition as to when completing the diagram can be useful.

1. The Triangle Picture: Add in orthocenters, circumcenters, excenters, incenters, the circumcircle, midpoints of arcs, feet of altitudes, etc. depending on whether they clarify any parts of the problem statement. This is almost always a good idea to at least try.
2. Intersecting Lines: This can be useful, especially when the intersection is at an angle that can be calculated or has some other significance. A somewhat trivial-sounding rule of thumb is that you want to introduce intersections that add clarity rather than further complicate the diagram. Usually one or several pairs of lines will stand out as useful to intersect.
3. Intersecting Lines with Circles: This is often useful since circles generally give angle relationships for free.
4. Implicit Circles: Sometimes an angle relationship or length relationship will be best simplified when interpreted in terms of a hidden circle.
5. Parallel and Perpendicular Lines: Sometimes it is useful to project points onto lines, either with a perpendicular or skew projection with parallel lines. This is often to create similar triangles or measure lengths.

Another somewhat trivial-sounding rule of thumb is that a introducing a line, point or circle to a diagram is only useful if it was implicit in the problem statement or relates two objects that were previously not relatable. This is the entire heuristic motivation behind the "completing the transformation" tricks for finding new points that are in the next section. In the sections afterwards, we discuss more heuristics in finding the right points to add to a diagram, including phantom points and intersecting circles. This section is devoted to more generic ways to add points to a diagram, which we demonstrate through several miscellaneous examples.

Example 7. (Russia 2015) An acute-angled $A B C(A B<A C)$ is inscribed into a circle ω. Let M be the centroid of $A B C$, and let $A H$ be an altitude of the triangle. The ray $M H$ meets ω at A^{\prime}. Prove that the circumcircle of the triangle $A^{\prime} H B$ is tangent to $A B$.

Solution. It suffices to show that $\angle B A^{\prime} H=\angle B$. Since $\angle B A^{\prime} H$ is an angle on the circle, it is worthwhile to see what this would imply in terms of subtended arc lengths. This motivates us to intersect the line $A^{\prime} H M$ with ω at D^{\prime}. We see that now our goal is to show that $A C=B D^{\prime}$, or equivalently that $A B C D^{\prime}$ is an isosceles trapezoid. Let D be the point such that $A B C D$ is an isosceles trapezoid. We want to show that H, M and D are collinear. Let M^{\prime} be the midpoint of $B C$ and note that $A D=H H^{\prime}=2 H M$ where H^{\prime} is the projection of D onto $B C$. Thus $H D$ divides the segment $A M^{\prime}$ in the ratio $2: 1$ since $A D$ and $B C$ are parallel. Thus $H D$ passes through M, as desired.

Example 8. (ISL 1995 G1) Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N, X Y$ are concurrent.

Solution. The diagram is cluttered and we try to reduce the parts of the diagrams we need to consider. The line $A M$ is simply the perpendicular to $C P$ at M and $D N$ is simply the perpendicular to $B P$ at N. We no longer have to think about A and D in defining these lines. Now we observe
that since $Z P$ is perpendicular to $B C$, these lines create cyclic quadrilaterals. It seems natural to introduce their intersections with $Z P$. Let the perpendiculars at M and N to $C P$ and $B P$ intersect $Z P$ at Q and R. We now have that $Z X M C$ and $Z Y N B$ are cyclic. Power of a point yields that $P Q \cdot P Z=P M \cdot P C=P X \cdot P Y=P N \cdot P B=P R \cdot P Z$. Therefore $Q=R$ and we are done.
Example 9. (ISL $2006 G_{4}$) Let $A B C$ be a triangle such that $\widehat{A C B}<\widehat{B A C}<\frac{\pi}{2}$. Let D be a point of $[A C]$ such that $B D=B A$. The incircle of $A B C$ touches $[A B]$ at K and $[A C]$ at L. Let J be the center of the incircle of $B C D$. Prove that $(K L)$ intersects $[A J]$ at its middle.

Solution. Angle chasing gives that $\angle A L K=90^{\circ}-\angle A / 2$ and $\angle C D J=90^{\circ}-\angle A / 2$. It makes sense to try to relate these two equal angles in the diagram by trying to move one into a position so that it relates to the other. Furthermore, working on the segment $A J$ seems difficult as we do not know angles or lengths related to this line. Instead, we try to work on $A C$, where we can make use of incircle tangent length formulas. We do this by reducing the problem using nonperpendicular projections in the direction of $K L$ onto $A C$. We find that this reduces the problem to a seemingly feasible alternative and also relates the equal angles originally found. Specifically, let P be the intersection of the line perpendicular to $K L$ through J with $A C$. It now suffices to show that L is the midpoint of $A P$. Since $\angle P D J=\angle A L K=\angle D P J$, we have that $P D J$ is isosceles and if M is the midpoint of $D P$, then M is also the foot of the perpendicular from J onto $A C$. Applying incircle tangent length formulas gives that $A L=\frac{1}{2}(A B+A C-B C)$ and $A P=A D+2 A M=A D+(B D+D C-B C)=A B+A C-B C$. This implies that L is the midpoint of $A P$ and the desired result follows.

The next example has multiple elements that are difficult to work with. Here, we follow cues presented in the diagram and obtain useful constructions (introduced points uniting more than one condition) and reduce the problem to feasible ratio calculations.

Example 10. (ISL 1996 G3) Let O be the circumcenter and H the orthocenter of an acuteangled triangle $A B C$ such that $B C>C A$. Let F be the foot of the altitude $C H$ of triangle $A B C$. The perpendicular to the line $O F$ at the point F intersects the line $A C$ at P. Prove that $\angle F H P=\angle B A C$.
Solution. If the problem statement is true, then $\angle C H P=180^{\circ}-\angle B A C$. Based on this angle relationship, intersecting $H P$ with $A B$ creates a cyclic quadrilateral. We reformulate the problem by defining P as the point on $A C$ satisfying $\angle F H P=\angle B A C$ introduce this intersection point and call it D. Our goal is now to show $\angle P F O=90^{\circ}$ and the two definitions are therefore equivalent. Since $C H A D$ is cyclic, we have that $\angle C D A=180^{\circ}-\angle C H A=\angle C B A$. Since the line $O F$ is difficult to deal with and angles around it have no simple formula, we try to reduce the problem to a condition relating something more directly related to P than $O F$. We have now that $D C B$ is isosceles and F is the midpoint of $B D$. If M is the midpoint of $A B$, then we now note that there is a homothety sending $M F$ to $A D$ with center B and ratio 2 . Let E be the image of O under this homothety. Note that $A E=2 O M=C H$. It now suffices to show that $\angle E D A=90^{\circ}-\angle P F H$. We now try to reduce this angle condition to length conditions which will be easier to deal with since many angles in the diagram cannot be expressed simply. If G is the intersection of $F P$ with the line through C perpendicular to $C H$. Since $\angle G C F=\angle E A D=90^{\circ}$, it suffices to show that $G C F$ and $E A D$ are similar, which is equivalent to showing that

$$
\frac{C H}{A D}=\frac{E A}{A D}=\frac{G C}{C F}=\frac{C P}{P A} \cdot \frac{A F}{C F}
$$

Now we resort to a ratio identity for cyclic quadrilaterals. The ratio $C P / P A$ is the ratio of the areas of triangles $D C H$ and $D A H$. Therefore since $C H A D$ is cyclic, we have that

$$
\frac{C P}{P A}=\frac{\sin \angle D C H \cdot C D \cdot C H}{\sin \angle D A H \cdot A D \cdot A H}=\frac{C B \cdot C H}{A D \cdot A H}
$$

Therefore the desired result reduces to proving that $A H / A F=B C / C F$ which follows from the fact that $A H F$ and $C B F$ are similar. This completes the proof.

4 Completing Transformations

One of the most useful techniques in synthetic geometry problems is to recognize a transformation present in a diagram, and introduce whatever points are needed to complete the set of images of points under this transformation. Often this heuristic yields the "magic point" that leads to a quick concise solution. For example, a diagram may contain a parallelogram $A B C D$ in which cases there is a translation mapping $A B$ to $D C$. A diagram may contain a trapezoid $A B C D$ with $A B \| C D$ in which case there is a homothety mapping $A B$ to $C D$. The transformations that most commonly appear are spiral similarities, rotations, homotheties and translations. The first few examples illustrate different ways to apply this heuristic for spiral similarities and rotations.

Example 11. (JBMO 2002) An isosceles triangle $A B C$ satisfies that $C A=C B$. A point P is on the circumcircle between A and B and on the opposite side of the line $A B$ to C. If D is the foot of the perpendicular from C to $P B$, show that $P A+P B=2 \cdot P D$.

Solution. We complete the rotation with center C mapping A to B. Let the point Q be such that triangles $Q C B$ and $P C A$ are congruent. Since $P A C B$ is cyclic,

$$
\angle C B Q=\angle C A P=180^{\circ}-\angle C B P
$$

which implies that P, B and Q are collinear. Since $Q C B$ and $P C A$ are congruent, $C P Q$ is isosceles and thus D is the midpoint of $P Q$. Therefore

$$
P A+P B=P Q=2 \cdot P D
$$

The second example is one direction of Ptolemy's Theorem.
Example 12. (Ptolemy's Theorem) If $A B C D$ is a cyclic quadrilateral, then

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

Here we construct similar triangles by applying a spiral similarity with center A mapping the C to D. We let the point B be mapped to P under this map, completing the transformation.

Solution. Let P be the point on $B D$ such that $\angle A P D=\angle A B C$. Note that since $\angle A D P=\angle A C B$ which implies that triangles $A B C$ and $A P D$ are similar. This implies that triangles $A D C$ and $A P B$ are similar. Therefore $\frac{A D}{A C}=\frac{P D}{B C}$ and $\frac{A B}{A C}=\frac{B P}{C D}$. Therefore

$$
B D=B P+P D=\frac{A B \cdot C D}{A C}+\frac{A D \cdot B C}{A C}
$$

which implies on multiplying up that $A B \cdot C D+A D \cdot B C=A C \cdot B D$.

Example 13. (ISL 2000 G6) Let $A B C D$ be a convex quadrilateral. The perpendicular bisectors of its sides $A B$ and $C D$ meet at Y. Denote by X a point inside the quadrilateral $A B C D$ such that $\measuredangle A D X=\measuredangle B C X<90^{\circ}$ and $\measuredangle D A X=\measuredangle C B X<90^{\circ}$. Show that $\measuredangle A Y B=2 \cdot \measuredangle A D X$.

In this example we consider the spiral similarity with center B mapping line $C X$ to the perpendicular bisector of $A B$ in order to obtain the angle we want Y to have at the image Y^{\prime} of C. We then show that $Y=Y^{\prime}$.

Solution. Let X^{\prime} and Y^{\prime} be such that $A X^{\prime}=B X^{\prime}, A Y^{\prime}=B Y^{\prime}, \measuredangle A X^{\prime} B=2 \cdot \measuredangle B X C$ and $\measuredangle A Y^{\prime} B=2 \cdot \measuredangle B C X$. We have that $A X^{\prime} Y^{\prime}$ and $A X D$ are similar, and that $B X^{\prime} Y^{\prime}$ and $B X C$ are similar. These similarities imply that triangles $A X X^{\prime}$ and $A D Y^{\prime}$ are similar and that triangles $B X X^{\prime}$ and $B C Y^{\prime}$ are similar. The ratios of similarity give that

$$
D Y^{\prime}=\frac{A Y^{\prime} \cdot X X^{\prime}}{A X^{\prime}}=\frac{B Y^{\prime} \cdot X X^{\prime}}{B X^{\prime}}=C Y^{\prime}
$$

Hence Y^{\prime} lies on the perpendicular bisector of $C D$ and $Y^{\prime}=Y$. Thus $\measuredangle A Y B=2 \cdot \measuredangle A D X$.
Example 14. (IMO 1996) Let P be a point inside a triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C
$$

Let D, E be the incenters of triangles $A P B, A P C$, respectively. Show that the lines $A P, B D, C E$ meet at a point.

Solution. Here we use spiral similarity to construct exactly the given angle condition. By the angle bisector theorem, it suffices to show that $\frac{A B}{B P}=\frac{A C}{C P}$. Let Q be such that triangles $A P B$ and $A C Q$ are similar. It follows that $A P C$ and $A B Q$ are similar. It follows that

$$
\angle C B Q=\angle A P C-\angle A B C=\angle A P B-\angle A C B=\angle B C Q
$$

and thus $B Q=C Q$. Ratios of similarity finish the problem

$$
\frac{A B}{B P}=\frac{A Q}{C Q}=\frac{A Q}{B Q}=\frac{A C}{C P}
$$

The next problem illustrates an often useful transformation when there is a midpoint of the side of a triangle. It is often useful to perform a 180° rotation about the midpoint to produce a parallelogram as in the example below which is from Challenging Problems in Geometry.

Example 15. Let $A B C$ be a given triangle and M be the midpoint of $B C$. If $\angle C A M=2 \cdot \angle B A M$ and D is a point on line $A M$ such that $\angle D B A=90^{\circ}$, prove that $A D=2 \cdot A C$.

Solution. There is a very short trigonometric solution to this problem, but we present a synthetic one to illustrate the transformation mentioned above. Let D be such that $A B D C$ is a parallelogram. If N is the midpoint of $A D$, then M is the midpoint of $A D$. Now note

$$
\angle B N D=2 \cdot \angle B A M=\angle C A M=\angle N D B
$$

and thus $B D=B N$. This implies that $A C=B D=B N=\frac{1}{2} A D$.

The next example completes another translation in the same vain as above.
Example 16. (2013 British $M O$) The point P lies inside triangle $A B C$ so that $\angle A B P=\angle P C A$. The point Q is such that $P B Q C$ is a parallelogram. Prove that $\angle Q A B=\angle C A P$.

Solution. Let R be such that $R A C P$ is a parallelogram. It follows that $\angle A R P=\angle P C A=\angle A B P$ which implies that $R A P B$ is cyclic. It follows that $B R P$ and $Q A C$ are congruent and thus $\angle Q A C=$ $\angle B R P=\angle B A P$. This implies that $\angle Q A B=\angle C A P$.

This last example completes a homothety.
Example 17. (ISL 2006 G2) Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $\frac{A K}{K B}=\frac{D L}{L C}$. Suppose that there are points P and Q on the line segment $K L$ satisfying $\angle A P B=\angle B C D$ and $\angle C Q D=\angle A B C$. Prove that the points P, Q, B and C are concyclic.

Solution. Since $A B C D$ is a trapezoid, there is a homothety sending $A B$ to $C D$ as well as one sending $A B$ to $D C$. We note that the homothety sending $A B$ to $D C$ also sends K to L. Now we complete this homothety in the diagram. Let $D A$ and $C B$ intersect at T and let the homothety with center T bring P to P^{\prime}. We have that K, P, Q, L and P^{\prime} are collinear and $P B \| P^{\prime} C$. Since $\angle D Q C+\angle A P B=\angle D Q C+\angle D P^{\prime} C=180^{\circ}$, we have $D Q C P^{\prime}$ is cyclic. Therefore $\angle Q P B=$ $\angle Q P^{\prime} C=\angle Q D C=180^{\circ}-\angle D Q C-\angle Q C D=\angle Q C B$. The conclusion follows.

5 Redefining Points

In this section, we build on an idea hinted at in Example 13. Sometimes a point may be defined in a deliberately difficult way in a problem statement. This also was the case in Example 3. Often the key to the solution is to find the "useful way" to define the point and prove that this is in fact the same point. Specifically, if P is a point in the diagram that is difficult to deal with, it is often best to define P^{\prime} in some other way using a property we think is true of P and then prove that $P^{\prime}=P$. One thing to note is that this method requires that we have a property of P in mind. Finding out what is true of P is usually the most difficult part of problems that can be solved using this method. Sometimes working backwards is enough, but oftentimes some guesswork, intuition and wishful thinking is necessary.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on a circle in the diagram or is concyclic with other points in the diagram, that two lines are parallel or perpendicular, or that two triangles are similar or congruent. It can be useful sometimes to try to eyeball some of these from a well-drawn diagram. Here are is an example.

Example 18. An acute-angled triangle $A B C$ is inscribed in a circle ω. A point P is chosen inside the triangle. Line $A P$ intersects ω at the point A_{1}. Line $B P$ intersects ω at the point B_{1}. A line ℓ is drawn through P and intersects $B C$ and $A C$ at the points A_{2} and B_{2}. Prove that the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$ intersect again on line ℓ.

We want to analyze the second intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. How much we can prove about this intersection Q varies greatly with how we define Q. First let's try defining Q directly as the intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. From this, we know that $\angle C Q B_{2}=180^{\circ}-\angle C B_{1} B_{2}$ and $\angle C Q A_{2}=180^{\circ}-\angle C A_{1} A_{2}$. What we want is
to show that $\angle C Q B_{2}+\angle C Q A_{2}=180^{\circ}$ which now is equivalent to $\angle C B_{1} B_{2}+\angle C A_{1} A_{2}=180^{\circ}$. However, this is not immediately true given the conditions in the problem. This doesn't seem to work. Let's try a different way of defining Q.

Solution. Define Q^{\prime} as the intersection of the circumcircle of $B_{1} P A_{1}$ and ℓ. From cyclic quadrilaterals, we have

$$
\angle B_{1} Q^{\prime} P=\angle B_{1} A_{1} P=\angle B_{1} C B_{2}
$$

which implies that Q^{\prime} is on the circumcircle of $B_{1} B_{2} C$. By a similar argument, we have that Q^{\prime} is on the circumcircle of $A_{1} A_{2} C$. Together these imply that $Q=Q^{\prime}$. Thus Q lies on ℓ.

A solution can also be obtained by defining Q^{\prime} as the intersection of the circumcircle of $B_{1} B_{2} C$ and ℓ. The way we define Q^{\prime} above can be motivated as follows. We want to define Q^{\prime} in some way and then use this way to show it lies on circles. The cleanest way to do this is to show the angle conditions for a cyclic quadrilateral. In order to get these angle conditions, one promising approach is to define Q^{\prime} as the intersection of a circle with something, which in this case is ℓ.

These next examples illustrate this same method applied in more situations. Particularly in Example 19, it is hard to find a clean solution without the observations used to define P^{\prime}.

Example 19. (China 2012) In the triangle $A B C, \angle A$ is biggest. On the circumcircle of $A B C$, let D be the midpoint of arc $A B C$ and E be the midpoint of arc $A C B$. The circle c_{1} passes through A, B and is tangent to $A C$ at A, the circle c_{2} passes through A, E and is tangent $A D$ at A. Circles c_{1} and c_{2} intersect at A and P. Prove that $A P$ bisects $\angle B A C$.

If the result is true, then by the tangency conditions $\angle A P B=180^{\circ}-\angle B A C$ and $\angle P B A=$ $180^{\circ}-\angle A P B-\angle P A B=\frac{1}{2} \angle B A C=\angle P A B$. Therefore if the problem is true, then P lies on the perpendicular bisector of $A B$. This gives us the hint to try defining P based on this. The method below defines P^{\prime} as the intersection of c_{1} and the perpendicular bisector of $A B$.

Solution. Let the center of c_{1} be O_{1} and let the center of c_{2} be O_{2}. Since c_{1} is tangent to $A C$, it follows that $\angle B O_{1} A=2 \angle B A C$. Since O_{1} and E both lie on the perpendicular bisector of $A B$, it follows that $O_{1} E$ bisects angle $\angle B O_{1} A$ which implies that $\angle B O_{1} A=\angle B A C$ and hence that $\angle B P^{\prime} E=90^{\circ}+\frac{1}{2} \angle B A C$. However, since P^{\prime} lies on the perpencular bisector $E O_{1}$ of $A B$, A is the reflection of B about $E O_{1}$ and $\angle A P^{\prime} E=\angle B P^{\prime} E=90^{\circ}+\angle B A C$. Since c_{2} is tangent to $A D$ and passes through E, it follows that $\angle A O_{2} E=2 \angle D A E=180^{\circ}-\angle B A C$. Combining this with the angle relation above yields that P^{\prime} lies on c_{2}. Hence P^{\prime} lies on both c_{1} and c_{2} and $P=P^{\prime}$. Therefore $\angle B A P=\frac{1}{2} \angle B O_{1} P=\frac{1}{2} \angle B A C$ which implies the result.

The next example really illustrates the power of redefining a point that is difficult to work with. Here, a relatively simple restatement reduces the problem to simple angle chasing.

Example 20. (ISL 2002 G3) The circle S has centre O, and $B C$ is a diameter of S. Let A be a point of S such that $\angle A O B<120^{\circ}$. Let D be the midpoint of the arc $A B$ which does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incentre of the triangle $C E F$.

Solution. We first make several preliminary observations. Since $E F$ is the perpendicular bisector of $O A$, we have that $A E=O E=O A$ and therefore $A O E$ is equilateral. Similarly, we have that $A O F$ is equilateral which implies that $\angle E O F=120^{\circ}$ and $\angle E C F=60^{\circ}$. These results also imply that A
is the midpoint of arc $\widehat{E F}$ and $C A$ bisects $\angle E C F$. After these preliminary observations, it becomes difficult to work with the point I as defined. The key here is to redefine I to be easier to work with. We now define I^{\prime} to be the incenter of $C E F$ with the goal of showing that $\angle D A O=\angle A O I^{\prime}$ since this would imply that $O I^{\prime} \| A D$ and therefore $I=I^{\prime}$. At this point, the task becomes far more feasible than before and reduces to angle chasing. First we note that $\angle E O F=120^{\circ}$ and $\angle E I^{\prime} F=90^{\circ}+\angle E C F / 2=120^{\circ}$ which implies that $E I^{\prime} O F$ is cyclic. Now we carry out our angle chasing methodically, attempting to eliminate points from consideration as we go. Note that $\angle D A O=90^{\circ}-\angle A O D / 2=90^{\circ}-\angle A C B / 2=45^{\circ}+\angle A B C / 2=45^{\circ}+\angle A F C / 2$, which is enough to eliminate D and B. Now note that $\angle A O I^{\prime}=\angle A O E+\angle E O I^{\prime}=60^{\circ}+\angle E F I=60^{\circ}+\angle E F C / 2$. Since $\angle A F C-\angle E F C=30^{\circ}$, we have that $\angle D A O=\angle A O I^{\prime}$, as desired.

A remarkably powerful way of redefining points is to try to identify them as the intersection of a line or circle with another circle. This yields angle information that often leads to quick solutions. To illustrate this, we outline the solution to what is possibly the hardest geometry problem on the IMO in recent memory.

Example 21. (IMO 2011) Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

Exhausting the diagram yields almost nothing promising. The main issue is that we know almost nothing about the point of tangency. The key to the simplest solution to this problem is to find a way to define this supposed point of tangency. We try intersecting circumcircles in order to obtain angle information to prove that the point of intersection lies on Γ, the circumcircle of the triangle determined by the three lines and prove that the circles are tangent at this point.

Solution. Let A^{\prime}, B^{\prime} and C^{\prime} be the intersections of ℓ_{b} and ℓ_{c}, ℓ_{a} and ℓ_{c}, and ℓ_{a} and ℓ_{b}, respectively. Let P be the point of tangency between Γ and ℓ and let Q be the reflection of P through $B C$. Now let T be the second intersection of the circumcircles of $B B^{\prime} Q$ and $C C^{\prime} Q$. It can be shown that T lies on Γ and the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ by angle chasing. Similarly, T can be shown to be a point of tangency between the circles by angle chasing. The angle chasing is made easier by first showing that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ meet at the incenter I of $A^{\prime} B^{\prime} C^{\prime}$.

Example 22. (CMO 2013) Let O denote the circumcenter of an acute-angled triangle $A B C$. Let point P on side $A B$ be such that $\angle B O P=\angle A B C$, and let point Q on side $A C$ be such that $\angle C O Q=\angle A C B$. Prove that the reflection of $B C$ in the line $P Q$ is tangent to the circumcircle of triangle $A P Q$.

Here, we use the method above to define the reflection R of the point of tangency in line $P Q$ as the intersection of triangle $O B P$ with side $B C$. This construction can be motivated either by noticing this pattern in the diagram, noting that this method of intersecting circles obtains angles in exactly the way needed to prove the result, or by trying to complete the Miquel configuration.

Solution. Let the circumcircle of triangle $O B P$ intersect side $B C$ at the points R and B and let $\angle A, \angle B$ and $\angle C$ denote the angles at vertices A, B and C, respectively. Now note that since $\angle B O P=\angle B$ and $\angle C O Q=\angle C$, it follows that

$$
\angle P O Q=360^{\circ}-\angle B O P-\angle C O Q-\angle B O C=360^{\circ}-(180-\angle A)-2 \angle A=180^{\circ}-\angle A
$$

This implies that $A P O Q$ is a cyclic quadrilateral. Since $B P O R$ is cyclic,

$$
\angle Q O R=360^{\circ}-\angle P O Q-\angle P O R=360^{\circ}-\left(180^{\circ}-\angle A\right)-\left(180^{\circ}-\angle B\right)=180^{\circ}-\angle C
$$

This implies that $C Q O R$ is a cyclic quadrilateral. Since $A P O Q$ and $B P O R$ are cyclic,

$$
\angle Q P R=\angle Q P O+\angle O P R=\angle O A Q+\angle O B R=\left(90^{\circ}-\angle B\right)+\left(90^{\circ}-\angle A\right)=\angle C
$$

Since $C Q O R$ is cyclic, $\angle Q R C=\angle C O Q=\angle C=\angle Q P R$ which implies that the circumcircle of triangle $P Q R$ is tangent to $B C$. Further, since $\angle P R B=\angle B O P=\angle B$,

$$
\angle P R Q=180^{\circ}-\angle P R B-\angle Q R C=180^{\circ}-\angle B-\angle C=\angle A=\angle P A Q
$$

This implies that the circumcircle of $P Q R$ is the reflection of Γ in line $P Q$. By symmetry in line $P Q$, this implies that the reflection of $B C$ in line $P Q$ is tangent to Γ.

6 Know the Classical Configurations

There are a lot of classical geometry configurations and miscellaneous facts that can help in math contests. Here is a selection of a few that seem to come up over and over again. Many more are included in my other handout. Some of these are difficult and worthwhile to prove on your own.

1. Given a triangle $A B C$, the intersections of the internal and external bisectors of $\angle B A C$ with the perpendicular bisector of $A B C$ lie on the circumcircle of $A B C$.
2. Facts related to the orthocenter H of a triangle $A B C$ with circumcircle Γ and center O :
(a) If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$.
(b) If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the triangle formed by projecting H onto the sides of $A B C$ to $D E F$ with ratio 2 .
(c) If D and E are the intersections of $A H$ with $B C$ and Γ, respectively, then D is the midpoint of $H E$.
(d) If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
(e) If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
3. Facts related to the incenter I and excenters I_{a}, I_{b}, I_{c} of $A B C$ with circumcircle Γ :
(a) If $A I$ intersects Γ at D then $D B=D I=D C, D$ is the midpoint of $I I_{a}$, and $I I_{a}$ is a diameter of the circle with center D which passes through B and C.
(b) If $B I$ and $C I$ intersect Γ again at D and E, then I is the reflection of A in line $D E$ and if M is the intersection of the external bisector of $\angle B A C$ with Γ, then $D M E I$ is a parallelogram.
(c) If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
(d) If M is the midpoint of arc $B A C$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
4. (Symmedian) Given a triangle $A B C$ such that M is the midpoint of $B C$, the symmedian from A is the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.
(a) If the tangents to the circumcircle Γ of $A B C$ at B and C intersect at N, then N lies on the symmedian from A and $\angle B A M=\angle C A N$.
(b) If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
5. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=$ $A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.
6. (Nine-Point Circle) Given a triangle $A B C$, let Γ denote the circle passing through the midpoints of the sides of $A B C$. If H is the orthocenter of $A B C$, then Γ passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
7. (Feuerbach's Theorem) The nine-point circle is tangent to the incircle and excircles.
8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
9. (Euler's Formula) Let O, I and I_{a} be the circumcenter, incenter and A-excenter of a triangle $A B C$ with circumradius R, inradius r and A-exradius r_{a}. Then:
(a) $O I=\sqrt{R(R-2 r)}$.
(b) $O I_{a}=\sqrt{R\left(R+2 r_{a}\right)}$.
10. Let $A B C$ be a given triangle with incircle ω and A-excircle ω_{a}. If ω and ω_{a} are tangent to $B C$ at M and N, then $A N$ passes through the point diametrically opposite to M on ω and $A M$ passes through the point diametrically opposite to N on ω_{a}.
11. Let $A B C$ be a triangle with incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. Let M be the midpoint of $B C$. The perpendicular to $B C$ at D, the median $A M$ and the line $E F$ are concurrent.
12. Let $A B C$ be a triangle with incenter I and incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. The angle bisector $C I$ intersects $F E$ at a point T on the line adjoining the midpoints of $A B$ and $B C$. It also holds that $B F T I D$ is cyclic and $\angle B T C=90^{\circ}$.
13. Let $A B C$ be a triangle with incircle ω and let D and E be the points at which ω is tangent to $B C$ and the A-excircle is tangent to $B C$. Then $A E$ passes through the point diametrically opposite to D on ω.
14. Let $A B C$ be a triangle with A-excenter I_{A} and altitutde $A D$. Let M be the midpoint of $A D$ and let K be the point of tangency between the incircle of $A B C$ and $B C$. Then I_{A}, K and M are collinear.
15. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.
16. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
17. (Butterfly Theorem) Let M be the midpoint of a chord $X Y$ of a circle Γ. The chords $A B$ and $C D$ pass through M. If $A D$ and $B C$ intersect chord $X Y$ at P and Q, then M is also the midpoint of $P Q$.
18. (Mixtilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let ω be a circle tangent internally to Γ and to $A B$ anc $A C$ at X and Y. Then the incenter of $A B C$ is the midpoint of segment $X Y$.
19. (Curvilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let D be a point on segment $B C$. Let ω be a circle tangent to $\Gamma, D A$ and $D C$. If ω is tangent to $D A$ and $D C$ at F and E, then the incenter of $A B C$ lies on $F E$.
20. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.

$7 \quad$ Problems

I have grouped the problems into three difficulty classes: A, B and C. These are loosely supposed to reflect the difficulty of Problems 1,2 and 3 at the IMO. However, some of the harder A problems are similar in difficulty to IMO \# 2's and some of the harder B problems are similar to IMO \# 3's.

A1. (Japan 2012) Let $A B C$ be a given triangle. The tangent to the circumcircle at A intersects the line $B C$ at P. Let Q and R be the reflections of the point P across the lines $A B$ and $A C$, respectively. Prove that the line $B C$ is perpendicular to the line $Q R$.

A2. (APMO 2007) Let $A B C$ be an acute angled triangle with $\angle B A C=60^{\circ}$ and $A B>A C$. Let I be the incenter, and H the orthocenter of the triangle $A B C$. Prove that $2 \angle A H I=3 \angle A B C$.

A3. (Russia 2010) Let $A B C$ be a given triangle and let K be a point on the internal bisector of $\angle B A C$. The line $C K$ intersects the circumcircle ω of triangle $A B C$ at $M \neq C$. The circle Ω passes through A, touches $C M$ at K and intersects segment $A B$ at $P \neq A$ and ω at $Q \neq A$. Prove, that P, Q and M are collinear.

A4. (Russia 2007) A line, which passes through the incenter I of the triangle $A B C$, meets its sides $A B$ and $B C$ at the points M and N, respectively. The points K, L are chosen on the side $A C$ such that $\angle I L A=\angle I M B$ and $\angle I K C=\angle I N B$. If the triangle $B M N$ is acute, prove that $A M+K L+C N=A C$.

A5. (Japan 2011) Let $A B C$ be a given acute triangle and let M be the midpoint of $B C$. Draw the perpendicular $H P$ from the orthocenter H of $A B C$ to $A M$. Show that $A M \cdot P M=B M^{2}$.

A6. (CMO 1997) The point O is situated inside the parallelogram $A B C D$ such that $\angle A O B+$ $\angle C O D=180^{\circ}$. Prove that $\angle O B C=\angle O D C$.

A7. (Russia 2012) The points A_{1}, B_{1} and C_{1} lie on the sides $B C, C A$ and $A B$ of the triangle $A B C$, respectively. Suppose that $A B_{1}-A C_{1}=C A_{1}-C B_{1}=B C_{1}-B A_{1}$. Let O_{A}, O_{B} and O_{C} be the circumcenters of triangles $A B_{1} C_{1}, A_{1} B C_{1}$ and $A_{1} B_{1} C$ respectively. Prove that the incenter of triangle $O_{A} O_{B} O_{C}$ is the incenter of triangle $A B C$.

A8. (Russia 2012) Consider the parallelogram $A B C D$ with obtuse angle A. Let H be the foot of perpendicular from A to the side $B C$. The median from C in triangle $A B C$ meets the circumcircle of triangle $A B C$ at the point K. Prove that points K, H, C, D lie on the same circle.

A9. (Russia 2006) Let K and L be two points on the $\operatorname{arcs} A B$ and $B C$ of the circumcircle of a triangle $A B C$, respectively, such that $K L$ is parallel to $A C$. Show that the incenters of triangles $A B K$ and $C B L$ are equidistant from the midpoint of the arc $A B C$ of the circumcircle of triangle $A B C$.

A10. (Russia 2016) The medians $A M_{A}, B M_{B}$ and $C M_{C}$ of triangle $A B C$ intersect at M. Let Ω_{A} be the circle passing through the midpoint of $A M$ and M_{B} and M_{C}. Define Ω_{B} and Ω_{C} analogously. Prove that Ω_{A}, Ω_{B} and Ω_{C} have a common point.

A11. (Russia 2002) Let O be the circumcenter of a triangle $A B C$. Points M and N are chosen on sides $A B$ and $A C$, respectively, and such that $\angle M O N=\angle B A C$. Prove that the perimeter of triangle $A M N$ is not less than the length of side $B C$.

B1. (2007 G3) The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.

B2. (Russia 2002) Diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ meet at point O. The circumcircles of triangles $A O B$ and $C O D$ intersect again at K. The point L is such that the triangles $B L C$ and $A K D$ are similar and equally oriented. Prove that if quadrilateral $B L C K$ is convex, then it has an inscribed circle.

B3. (Russia 2002) Let $A B C$ be a given triangle. Let ℓ_{a} be the line parallel to the internal bisector of angle $\angle A$ passing through the point at which the excircle opposite vertex A is tangent to side $B C$. Define ℓ_{b} and ℓ_{c} analogously. Prove that ℓ_{a}, ℓ_{b} and ℓ_{c} are concurrent.

B4. (Russia 2011) The perimeter of a given triangle $A B C$ is 4 . The point X lies on ray $A B$ and point Y lies on ray $A C$ such that $A X=A Y=1$. If the line $X Y$ intersects segment $B C$ at the point M, prove that the perimeter of one of the triangles $A B M$ or $A C M$ is 2 .

B5. (Japan 2012) Let triangles $P A B$ and $P C D$ be such that $P A=P B, P C=P D, P, A, C$ are collinear in that order and B, P, D are collinear in that order. The circle S_{1} passes through A and C and intersects with the circle S_{2} passing through B and D at distinct points X and Y. Prove that the circumcenter of the triangle $P X Y$ is the midpoint of the segment adjoining the centers of S_{1} and S_{2}.

B6. (Japan MO 2009) Let Γ be the circumcircle of a triangle $A B C$. A circle with center O touches to line segment $B C$ at P and touches the arc $B C$ of Γ which doesn't have A at Q. If $\angle B A O=\angle C A O$, then prove that $\angle P A O=\angle Q A O$.

B7. (Russia 2012) The point E is the midpoint of the segment connecting the orthocenter of the scalene triangle $A B C$ and the point A. The incircle of triangle $A B C$ incircle is tangent to $A B$ and $A C$ at points C^{\prime} and B^{\prime}, respectively. Prove that point F, the point symmetric to point E with respect to line $B^{\prime} C^{\prime}$, lies on the line that passes through both the circumcenter and the incenter of triangle $A B C$.

B8. (1995 G8) Suppose that $A B C D$ is a cyclic quadrilateral. Let E be the intersection of $A C$ and $B D$ and let F be the intersection of $A B$ and $C D$. Denote by H_{1} and H_{2} the orthocenters of triangles $E A D$ and $E B C$, respectively. Prove that the points F, H_{1}, H_{2} are collinear.

C1. (Russia 2011). Let M be the midpoint of side $B C$ of a triangle $A B C$ and N be the midpoint of arc $B A C$ of the circumcircle of the triangle. Prove that the points A, N and the incenters of triangles $A B M$ and $A C M$ are concyclic.

C2. (Mathlinks) Let $A B C D$ be an isosceles trapezoid with $A D$ parallel to $B C$. The circle ω is tangent to segments $A B$ and $A C$ and to the circumcircle of $A B C D$ at the point M. Let the incircle of triangle $A B C$ be tangent to $B C$ at P. Prove that D, P and M are collinear.

C3. (Japan 2001) Suppose that $A B C$ and $P Q R$ are triangles such that A and P are the midpoints of $Q R$ and $B C$, respectively. If $Q R$ and $B C$ are the internal bisectors of $\angle B A C$ and $\angle Q P R$, respectively, prove that $A B+A C=P Q+P R$.

C4. (CGMO 2011) The A-excircle of triangle $A B C$ is centered at I and is tangent to $B C$ at M. The points D and E lie on rays $A B$ and $A C$ and satisfy that $D E$ is parallel to $B C$. The incircle of triangle $A D E$ is centered at J and tangent to $D E$ at N. If $B I$ and $D J$ intersect at F and C and $E J$ intersect at G, prove that the midpoint of $F G$ lies on $M N$.

C5. (Russia 2006) Let $A B C$ be an acute-angled triangle with incenter I. The lines $B I$ and $C I$ meet sides $A C$ and $A B$ at B_{1} and C_{1}, respectively. If the line $B_{1} C_{1}$ meets the circumcircle of $A B C$ at M and N, prove that the circumradius of triangle $M I N$ is twice that of $A B C$.

C6. (ISL 2004 G 7) For a given triangle $A B C$, let X be a variable point on the line $B C$ such that C lies between B and X and the incircles of the triangles $A B X$ and $A C X$ intersect at two distinct points P and Q. Prove that the line $P Q$ passes through a point independent of X.

C7. (ISL 2012 G6) Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

C8. (ISL 2002 G 7) The incircle Ω of the acute-angled triangle $A B C$ is tangent to its side $B C$ at a point K. Let $A D$ be an altitude of triangle $A B C$, and let M be the midpoint of the segment $A D$. If N is the common point of the circle Ω and the line $K M$ (distinct from K), then prove that the incircle Ω and the circumcircle of triangle $B C N$ are tangent to each other at the point N.

C9. (RMM 2011) A triangle $A B C$ is inscribed in a circle ω. A variable line ℓ chosen parallel to $B C$ meets segments $A B, A C$ at points D, E respectively, and meets ω at points K, L (where D lies between K and E). Circle γ_{1} is tangent to the segments $K D$ and $B D$ and also tangent to ω, while circle γ_{2} is tangent to the segments $L E$ and $C E$ and also tangent to ω. Determine the locus, as ℓ varies, of the meeting point of the common inner tangents to γ_{1} and γ_{2}.

8 Hints

If there is a theorem or fact that is useful, I have tried to indicate it with the label TL.
A1. If Q^{\prime} and R^{\prime} are the midpoints of $P Q$ and $P R$, respectively, prove that $Q^{\prime} R^{\prime}$ is perpendicular to $B C$.

A2. Angle chase completely and look for cyclic quadrilaterals.
A3. Angle chase completely.
A4. Consider the reflection of M in line $A I$ and the reflection of N in line $C I$.
A5. Consider the feet Q and R of the perpendiculars from H to $A B$ and $A C$, respectively. What can be said about the relationship between $M Q, M R$ and the circumcircle of triangle $A H P$.

A6. Consider the translation mapping $A B$ to $C D$. Complete the picture.
A7. Consider the projections D, E and F from the incenter I of triangle $A B C$ to sides $B C$, $A C$ and $A B$, respectively. What can be said about the lengths $D A_{1}, E B_{1}$ and $F C_{1}$? Can you, from here, prove something useful about the quadrilateral $A B_{1} C_{1} I$? TL: lengths of the segments adjoining the vertices of a triangle to the tangency points of its incenter, the angle bisector and opposite perpendicular bisector meet on the circumcircle of a triangle.

A8. Consider the point E such that $K H B E$ is a rectangle. Notice the information we use about K to solve the problem. Is there a way to solve the problem without the point E ?

A9. Let the midpoint of arc $A B C$ be M and let the incenters of $A B K$ and $C B L$ be I_{1} and I_{2}, respectively. Extend $B I_{1}$ and $B I_{2}$ to intersect the circumcircle of $A B C$. Can you prove that two triangles are congruent? TL: in a triangle $X Y Z$ with incenter I, the circumcenter of $X Y I$ lies on the circumcircle of $X Y Z$.

A10. Define the intersection of two of the circles. Angle chase from here.
A11. Consider rotating triangles $A M O$ and $A N O$ about O. Can you create a figure which immediately implies the desired result?

B1. Consider the homothety mapping $B C$ to $D A$ with center P.
B2. Consider the point I such that triangles $K I C$ and $A B C$ are similar and equally oriented. Show that I lies on the bisectors of angles $\angle B K C, \angle K B L$ and $\angle K C L$. TL: the unique center of spiral similarity sending A to B and C to D is the second intersection of the circumcircles of $A C P$ and $B D P$ where $A B$ and $C D$ intersect at P, if triangles $O X Y$ and $O Z W$ are similar and equally oriented then triangles $O X Z$ and $O Y W$ are similar and equally oriented.

B3. Prove that the lines passing through the tangency points of the incircle to the three sides and parallel to the triangle's angle bisectors are concurrent. Prove that the lines passing through the midpoints of the sides and parallel to the triangle's angle bisectors are concurrent. How does this imply the desired result? TL: the midpoint of the segment adjoining the points of tangency of the incircle and the excircle to a side of a triangle is the midpoint of that side of the triangle.

B4. Find two circles that $X Y$ is the radical axis of. Note that a circle can have radius 0 . TL: radical axis theorem, the radical axis of two circles passes through the midpoints of all common tangents to the two circles.

B5. Calculate the distances from X and Y to the midpoint of the segment adjoining the centers of S_{1} and S_{2} in terms of the radii of the circles. Find a clean way to show that this is also the distance from P to this point. TL: Stewart's Theorem or Cosine Law.

B6. Introduce the midpoints of both arcs between B and C. What is the desired result equivalent to in terms of the quadrilateral $A P O Q$?

B7. Consider the reflection A^{\prime} of A in $B^{\prime} C^{\prime}$ and note that $A^{\prime} F$ is parallel to $A O$.
B8. Try to overlay the similar triangles $F A D$ and $F C B$ and complete the picture in terms of H_{1} and H_{2}. Is there now a complete the transformation-style argument?

C1. Reflect the incenter of $A B M$ about the line $M N$ and apply the trigonometric form of Ceva's Theorem. TL: trigonometric form of Ceva's Theorem or the existence of isogonal conjugates.

C2. Let I be the incenter of triangle $A B C$ and let Q and R be the midpoints of $B I$ and $C I$, respectively. Consider the second intersection of the circumcircles of triangles $B Q P$ and $C R P$. TL: Pascal's Theorem or inversion.

C3. Let the perpendicular bisector of $Q R$ intersect $B C$ at D and let the perpendicular bisector of $B C$ intersect $Q R$ at E. Let the perpendicular bisectors of $B C$ and $Q R$ intersect each other at X. Use triangle $X D E$ to find the ratio $D P / A E$ in terms of the angles $\angle A$ and $\angle P$. TL: the intersection of an angle bisector of a triangle and its opposite perpendicular bisector lies on the circumcircle of the triangle.

C4. Let $O B$ intersect $O_{1} D$ at P and let $O C$ intersect $O_{1} E$ at Q. Prove that $P Q$ is parallel to $B C$. Prove that if S is the internal center of homothety between the circles (O) and $\left(O_{1}\right)$, then P, F and S are collinear and Q, G and S are collinear. Now use the fact that the line adjoining the midpoints of $M N$ and $O O_{1}$ is perpendicular to $B C$. TL: Ceva's Theorem.

C5. Let I_{B} and I_{C} be the B and C excenters of $A B C$. Prove that $I_{B} M I N I_{C}$ is cyclic. TL: the nine-point circle.

C6. Prove as a lemma that given a triangle $A B C$, the bisector of $\angle A B C$, the line joining the midpoints of $A B$ and $A C$, and the line through the points of tangency between the incircle and $B C$ and $A C$ are concurrent.

C7. Consider the midpoint M of $\operatorname{arc} F D$ on the circumcircle of $B F D$. Prove that M and I have the same power of a point with respect to the circumcircle of $A B C$. Do the same for the circumcircles of $C E D$ and $A F E$.

C8. Prove that $K M$ passes through the A-excenter of $A B C$. Now use the fact that if X lies on the polar from Y to Ω then Y lies on the polar from Ω (pole-polar).

C9. Invert about A with power $A K \cdot A L$.

