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1 Introduction

These notes outline a few basic synthetic methods to approach geometry problems on Olympiads.
The solution outlines are sketches intended to emphasize motivation more than rigour. In particular,
they do not deal with configuration issues and special cases. The accompanying handout includes
a few geometry facts and theorems that are useful to know and also worthwhile exercises to work
through an prove yourself. Some of the more useful of these facts are highlighted in Section 6.

2 Exhaust the Diagram

Sometimes it is tempting with geometry problems to immediately start guessing what magic point,
line or circle to draw in the diagram leads to an elegant short solution. Before doing this, it is
worthwhile to make sure that the problem actually needs something new. Oftentimes, the problem
statement already has introduced all parts of the diagram that the most straightforward solution
will need. In these cases, making sure you figure out everything you can with what you are given
is much more productive than adding points to the diagram. Here are some things to try:

1. Angle Chasing : Given your knowledge of similar triangles and cyclic quadrilaterals in the
diagram, find all angle relationships you can in the diagram. This is an essential step in
almost all Olympiad geometry problems.

2. Length Chasing : Many problems can be solved by alternating between angle and length
chasing – using some length relationships to find a new cyclic quadrilateral or pair of similar
triangles and subsequently making use of whatever new angle relationships this yields. Here
are some approaches to length chasing:

(a) Similar Triangles: These arise in many different contexts. One common way is spiral
similarity: If OAB and OCD are similar triangles with the same orientation, then so
are OAC and OBD.

(b) Power of a Point : If AB and CD meet at the point P then PA · PB = PC · PD if and
only if ABCD is cyclic.

(c) Menelaus and Ceva: Given a triangle ABC, let the points D,E and F be on lines
AB,BC and AC, respectively. Then

AD

DB
· BE
EC
· CF
FA

= 1

if and only if D,E and F are collinear or CD,AE and BF are concurrent (depending
on how many of D, E and F are on the sides of ABC).
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3. Work Backwards: Assuming the result is true, what else would have to be true? Can you show
any of these implications without assuming the result? Can you use any of these intermediary
results to solve the problem?

Here are some examples of problems that can be solved by exhausting the diagram as given in the
problem statement, without adding any drastically new points. The first two examples need no
new points at all.

Example 1. (Russia 2013) Acute-angled triangle ABC is inscribed into circle Ω. Lines tangent
to Ω at B and C intersect at P . Points D and E are on AB and AC such that PD and PE
are perpendicular to AB and AC respectively. Prove that the orthocentre of triangle ADE is the
midpoint of BC.

Solution. If M is the midpoint of BC, then ∠PMB = ∠PDB = 90◦ and thus PMBD is cyclic.
Now ∠BDM = ∠BPM = 90◦ − ∠CBP = ∠BAC. Thus DM is perpendicular to AC. Similarly,
EM is perpendicular to AB.

Example 2. (CMO 2014) The quadrilateral ABCD is inscribed in a circle. The point P lies in
the interior of ABCD, and ∠PAB = ∠PBC = ∠PCD = ∠PDA. The lines AD and BC meet at
Q, and the lines AB and CD meet at R. Prove that the lines PQ and PR form the same angle as
the diagonals of ABCD.

Solution. Angle chasing gives that ∠DPA = ∠DCB. Now note that QDPB and RAPC are
cyclic. Thus ∠DPQ = ∠DBQ = ∠DBC and ∠RPA = ∠DCA. Now note that ∠DPR =
∠DCB−∠RPA = ∠DCB−∠DCA = ∠ACB. Thus ∠QPR = ∠QPD+∠RPD = ∠DBC+∠ACB
which implies the result.

This next example succumbs easily to working backwards from the desired result.

Example 3. (IMO 2004 #1) Let ABC be an acute-angled triangle with AB 6= AC. The circle
with diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the
midpoint of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect at R. Prove
that the circumcircles of the triangles BMR and CNR have a common point lying on the side BC.

Solution. The result is true if and only if ∠BMR = ∠CNR since then the angles to segments
BR and RC at the intersection of the two circles will be supplementary. This occurs if and only if
AMRN is cyclic. Since R lies on the bisector of ∠BAC, R must lie on the perpendicular bisector of
MN . However, we know this is true since the angle bisector of MON is the perpendicular bisector
of MN . Running this argument in reverse yields a solution.

The next problem really illustrates the power of looking for similar triangles and stopping to
think about what is already in the diagram before trying to introduce new points.

Example 4. (ISL 2005 G3) Let ABCD be a parallelogram. A variable line g through the vertex A
intersects the rays BC and DC at the points X and Y , respectively. Let K and L be the A-excenters
of the triangles ABX and ADY . Show that ∠KCL is independent of the line g.

Solution. Angle chasing gives that ∠ALD = ∠KAB = ∠BAX/2 and ∠DAL = ∠BKA =
∠ADY /2. Therefore triangles ADL and KBA are similar which implies that AB/BK = DL/AD
and therefore DL/CD = BC/BK. Since ∠CDL = ∠CBK = 90◦−∠ADC/2, it follows that trian-
gles CDL and KBC are siimilar. Now it follows that ∠KCL = 360◦−∠BCD−∠DCL−∠BCK =
180◦ + ∠CDL− ∠BCD = 180◦ − ∠BCD/2 which is independent of g.
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These next two problems involve primarily length chasing. Both also require introducing the
orthocenter of the described triangle. However, in both cases, this is just the intersection of altitudes
already given in the problem statement.

Example 5. (Russia 2005) In an acute-angled triangle ABC, AM and BN are altitudes. A point
D is chosen on arc ACB of the circumcircle of the triangle. Let the lines AM and BD meet at P
and the lines BN and AD meet at Q. Prove that MN bisects segment PQ.

Solution. Assume without the loss of generality that D is on arc AC not including B. Let H be
the orthocenter of ABC. Since ADCB is cyclic,

∠PAN = ∠DAC = ∠DBC = ∠QBM.

Also, it follows that
∠NAH = 90◦ − ∠ACB = ∠MBH.

Since HP ⊥ AN and HQ ⊥ BM , PAN is similar to QBM and NAH is similar to MBH.
Therefore

PM

MH
=
PM/BM

MH/BM
=
QN/AN

NH/AN
=
QN

NH

If X denotes the midpoint of PQ, then

PM

MH
· NH
QN

· QX
XP

= 1

and by Menelaus’ Theorem applied to triangle HPQ, points X, M and N are collinear.

Example 6. (ISL 2008 G4) In an acute triangle ABC segments BE and CF are altitudes. Two
circles passing through the points A and F and tangent to the line BC at the points P and Q so
that B lies between C and Q. Prove that lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution. This problem is straightforward with power of a point and does not require introducing
any new points other than the orthocenter H of ABC and foot of the perpendicular from A to BC,
which are already implicitly present. Relating our goal to angles already in the diagram reduces
the problem to showing that ∠QFB = ∠PEC. By power of a point BQ2 = BP 2 = BF · BA and
triangles QFB and AQB are similar. Therefore it suffices to show that ∠PEC = ∠AQC which is
equivalent to AQPE being cyclic. By power of a point we now have

CP · CQ = BC2 −BP 2 = BC2 −BF ·BA = BC2 −BD ·BC = CD · CB = CE · CA

Therefore AQPE is cyclic and we are done.

3 Completing the Diagram

As seen in the last few examples in the previous section, it is often useful to introduce some points
implicit in the problem statement, such as intersection points, triangle centers and projections. A
large number of Olympiad geometry problems can be solved by (1) exhausting the diagram and (2)
in this way “completing the diagram”. This is a vague heuristic and can take many forms, which
are impossible to characterize in a single broad stroke. Nonetheless, here is an attempt at some
intuition as to when completing the diagram can be useful.
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1. The Triangle Picture: Add in orthocenters, circumcenters, excenters, incenters, the circum-
circle, midpoints of arcs, feet of altitudes, etc. depending on whether they clarify any parts
of the problem statement. This is almost always a good idea to at least try.

2. Intersecting Lines: This can be useful, especially when the intersection is at an angle that
can be calculated or has some other significance. A somewhat trivial-sounding rule of thumb
is that you want to introduce intersections that add clarity rather than further complicate
the diagram. Usually one or several pairs of lines will stand out as useful to intersect.

3. Intersecting Lines with Circles: This is often useful since circles generally give angle relation-
ships for free.

4. Implicit Circles: Sometimes an angle relationship or length relationship will be best simplified
when interpreted in terms of a hidden circle.

5. Parallel and Perpendicular Lines: Sometimes it is useful to project points onto lines, either
with a perpendicular or skew projection with parallel lines. This is often to create similar
triangles or measure lengths.

Another somewhat trivial-sounding rule of thumb is that a introducing a line, point or circle to
a diagram is only useful if it was implicit in the problem statement or relates two objects that
were previously not relatable. This is the entire heuristic motivation behind the “completing
the transformation” tricks for finding new points that are in the next section. In the sections
afterwards, we discuss more heuristics in finding the right points to add to a diagram, including
phantom points and intersecting circles. This section is devoted to more generic ways to add points
to a diagram, which we demonstrate through several miscellaneous examples.

Example 7. (Russia 2015) An acute-angled ABC (AB < AC) is inscribed into a circle ω. Let M
be the centroid of ABC, and let AH be an altitude of the triangle. The ray MH meets ω at A′.
Prove that the circumcircle of the triangle A′HB is tangent to AB.

Solution. It suffices to show that ∠BA′H = ∠B. Since ∠BA′H is an angle on the circle, it is
worthwhile to see what this would imply in terms of subtended arc lengths. This motivates us to
intersect the line A′HM with ω at D′. We see that now our goal is to show that AC = BD′, or
equivalently that ABCD′ is an isosceles trapezoid. Let D be the point such that ABCD is an
isosceles trapezoid. We want to show that H,M and D are collinear. Let M ′ be the midpoint of
BC and note that AD = HH ′ = 2HM where H ′ is the projection of D onto BC. Thus HD divides
the segment AM ′ in the ratio 2 : 1 since AD and BC are parallel. Thus HD passes through M , as
desired.

Example 8. (ISL 1995 G1) Let A,B,C,D be four distinct points on a line, in that order. The
circles with diameters AC and BD intersect at X and Y . The line XY meets BC at Z. Let P
be a point on the line XY other than Z. The line CP intersects the circle with diameter AC at C
and M , and the line BP intersects the circle with diameter BD at B and N . Prove that the lines
AM,DN,XY are concurrent.

Solution. The diagram is cluttered and we try to reduce the parts of the diagrams we need to
consider. The line AM is simply the perpendicular to CP at M and DN is simply the perpendicular
to BP at N . We no longer have to think about A and D in defining these lines. Now we observe
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that since ZP is perpendicular to BC, these lines create cyclic quadrilaterals. It seems natural to
introduce their intersections with ZP . Let the perpendiculars at M and N to CP and BP intersect
ZP at Q and R. We now have that ZXMC and ZY NB are cyclic. Power of a point yields that
PQ · PZ = PM · PC = PX · PY = PN · PB = PR · PZ. Therefore Q = R and we are done.

Example 9. (ISL 2006 G4) Let ABC be a triangle such that ÂCB < B̂AC < π
2 . Let D be a point

of [AC] such that BD = BA. The incircle of ABC touches [AB] at K and [AC] at L. Let J be
the center of the incircle of BCD. Prove that (KL) intersects [AJ ] at its middle.

Solution. Angle chasing gives that ∠ALK = 90◦ − ∠A/2 and ∠CDJ = 90◦ − ∠A/2. It makes
sense to try to relate these two equal angles in the diagram by trying to move one into a position
so that it relates to the other. Furthermore, working on the segment AJ seems difficult as we
do not know angles or lengths related to this line. Instead, we try to work on AC, where we
can make use of incircle tangent length formulas. We do this by reducing the problem using non-
perpendicular projections in the direction of KL onto AC. We find that this reduces the problem
to a seemingly feasible alternative and also relates the equal angles originally found. Specifically,
let P be the intersection of the line perpendicular to KL through J with AC. It now suffices
to show that L is the midpoint of AP . Since ∠PDJ = ∠ALK = ∠DPJ , we have that PDJ
is isosceles and if M is the midpoint of DP , then M is also the foot of the perpendicular from
J onto AC. Applying incircle tangent length formulas gives that AL = 1

2(AB + AC − BC) and
AP = AD + 2AM = AD + (BD + DC − BC) = AB + AC − BC. This implies that L is the
midpoint of AP and the desired result follows.

The next example has multiple elements that are difficult to work with. Here, we follow cues
presented in the diagram and obtain useful constructions (introduced points uniting more than one
condition) and reduce the problem to feasible ratio calculations.

Example 10. (ISL 1996 G3) Let O be the circumcenter and H the orthocenter of an acute-
angled triangle ABC such that BC > CA. Let F be the foot of the altitude CH of triangle
ABC. The perpendicular to the line OF at the point F intersects the line AC at P . Prove that
∠FHP = ∠BAC.

Solution. If the problem statement is true, then ∠CHP = 180◦ − ∠BAC. Based on this angle
relationship, intersecting HP with AB creates a cyclic quadrilateral. We reformulate the problem
by defining P as the point on AC satisfying ∠FHP = ∠BAC introduce this intersection point and
call it D. Our goal is now to show ∠PFO = 90◦ and the two definitions are therefore equivalent.
Since CHAD is cyclic, we have that ∠CDA = 180◦ − ∠CHA = ∠CBA. Since the line OF is
difficult to deal with and angles around it have no simple formula, we try to reduce the problem
to a condition relating something more directly related to P than OF . We have now that DCB is
isosceles and F is the midpoint of BD. If M is the midpoint of AB, then we now note that there
is a homothety sending MF to AD with center B and ratio 2. Let E be the image of O under this
homothety. Note that AE = 2OM = CH. It now suffices to show that ∠EDA = 90◦ − ∠PFH.
We now try to reduce this angle condition to length conditions which will be easier to deal with
since many angles in the diagram cannot be expressed simply. If G is the intersection of FP with
the line through C perpendicular to CH. Since ∠GCF = ∠EAD = 90◦, it suffices to show that
GCF and EAD are similar, which is equivalent to showing that

CH

AD
=
EA

AD
=
GC

CF
=
CP

PA
· AF
CF
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Now we resort to a ratio identity for cyclic quadrilaterals. The ratio CP/PA is the ratio of the
areas of triangles DCH and DAH. Therefore since CHAD is cyclic, we have that

CP

PA
=

sin∠DCH · CD · CH
sin∠DAH ·AD ·AH

=
CB · CH
AD ·AH

Therefore the desired result reduces to proving that AH/AF = BC/CF which follows from the
fact that AHF and CBF are similar. This completes the proof.

4 Completing Transformations

One of the most useful techniques in synthetic geometry problems is to recognize a transformation
present in a diagram, and introduce whatever points are needed to complete the set of images
of points under this transformation. Often this heuristic yields the “magic point” that leads to
a quick concise solution. For example, a diagram may contain a parallelogram ABCD in which
cases there is a translation mapping AB to DC. A diagram may contain a trapezoid ABCD with
AB‖CD in which case there is a homothety mapping AB to CD. The transformations that most
commonly appear are spiral similarities, rotations, homotheties and translations. The first few
examples illustrate different ways to apply this heuristic for spiral similarities and rotations.

Example 11. (JBMO 2002) An isosceles triangle ABC satisfies that CA = CB. A point P is on
the circumcircle between A and B and on the opposite side of the line AB to C. If D is the foot of
the perpendicular from C to PB, show that PA+ PB = 2 · PD.

Solution. We complete the rotation with center C mapping A to B. Let the point Q be such that
triangles QCB and PCA are congruent. Since PACB is cyclic,

∠CBQ = ∠CAP = 180◦ − ∠CBP

which implies that P , B and Q are collinear. Since QCB and PCA are congruent, CPQ is isosceles
and thus D is the midpoint of PQ. Therefore

PA+ PB = PQ = 2 · PD

The second example is one direction of Ptolemy’s Theorem.

Example 12. (Ptolemy’s Theorem) If ABCD is a cyclic quadrilateral, then

AB · CD +AD ·BC = AC ·BD

Here we construct similar triangles by applying a spiral similarity with center A mapping the
C to D. We let the point B be mapped to P under this map, completing the transformation.

Solution. Let P be the point on BD such that ∠APD = ∠ABC. Note that since ∠ADP = ∠ACB
which implies that triangles ABC and APD are similar. This implies that triangles ADC and
APB are similar. Therefore AD

AC = PD
BC and AB

AC = BP
CD . Therefore

BD = BP + PD =
AB · CD
AC

+
AD ·BC
AC

which implies on multiplying up that AB · CD +AD ·BC = AC ·BD.
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Example 13. (ISL 2000 G6) Let ABCD be a convex quadrilateral. The perpendicular bisectors
of its sides AB and CD meet at Y . Denote by X a point inside the quadrilateral ABCD such that
]ADX = ]BCX < 90◦ and ]DAX = ]CBX < 90◦. Show that ]AY B = 2 · ]ADX.

In this example we consider the spiral similarity with center B mapping line CX to the per-
pendicular bisector of AB in order to obtain the angle we want Y to have at the image Y ′ of C.
We then show that Y = Y ′.

Solution. Let X ′ and Y ′ be such that AX ′ = BX ′, AY ′ = BY ′, ]AX ′B = 2 · ]BXC and
]AY ′B = 2 · ]BCX. We have that AX ′Y ′ and AXD are similar, and that BX ′Y ′ and BXC
are similar. These similarities imply that triangles AXX ′ and ADY ′ are similar and that triangles
BXX ′ and BCY ′ are similar. The ratios of similarity give that

DY ′ =
AY ′ ·XX ′

AX ′
=
BY ′ ·XX ′

BX ′
= CY ′

Hence Y ′ lies on the perpendicular bisector of CD and Y ′ = Y . Thus ]AY B = 2 · ]ADX.

Example 14. (IMO 1996) Let P be a point inside a triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP , BD, CE
meet at a point.

Solution. Here we use spiral similarity to construct exactly the given angle condition. By the angle
bisector theorem, it suffices to show that AB

BP = AC
CP . Let Q be such that triangles APB and ACQ

are similar. It follows that APC and ABQ are similar. It follows that

∠CBQ = ∠APC − ∠ABC = ∠APB − ∠ACB = ∠BCQ

and thus BQ = CQ. Ratios of similarity finish the problem

AB

BP
=
AQ

CQ
=
AQ

BQ
=
AC

CP

The next problem illustrates an often useful transformation when there is a midpoint of the
side of a triangle. It is often useful to perform a 180◦ rotation about the midpoint to produce a
parallelogram as in the example below which is from Challenging Problems in Geometry.

Example 15. Let ABC be a given triangle and M be the midpoint of BC. If ∠CAM = 2 ·∠BAM
and D is a point on line AM such that ∠DBA = 90◦, prove that AD = 2 ·AC.

Solution. There is a very short trigonometric solution to this problem, but we present a synthetic
one to illustrate the transformation mentioned above. Let D be such that ABDC is a parallelogram.
If N is the midpoint of AD, then M is the midpoint of AD. Now note

∠BND = 2 · ∠BAM = ∠CAM = ∠NDB

and thus BD = BN . This implies that AC = BD = BN = 1
2AD.
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The next example completes another translation in the same vain as above.

Example 16. (2013 British MO) The point P lies inside triangle ABC so that ∠ABP = ∠PCA.
The point Q is such that PBQC is a parallelogram. Prove that ∠QAB = ∠CAP .

Solution. Let R be such that RACP is a parallelogram. It follows that ∠ARP = ∠PCA = ∠ABP
which implies that RAPB is cyclic. It follows that BRP and QAC are congruent and thus ∠QAC =
∠BRP = ∠BAP . This implies that ∠QAB = ∠CAP .

This last example completes a homothety.

Example 17. (ISL 2006 G2) Let ABCD be a trapezoid with parallel sides AB > CD. Points K
and L lie on the line segments AB and CD, respectively, so that AK

KB = DL
LC . Suppose that there are

points P and Q on the line segment KL satisfying ∠APB = ∠BCD and ∠CQD = ∠ABC. Prove
that the points P , Q, B and C are concyclic.

Solution. Since ABCD is a trapezoid, there is a homothety sending AB to CD as well as one
sending AB to DC. We note that the homothety sending AB to DC also sends K to L. Now we
complete this homothety in the diagram. Let DA and CB intersect at T and let the homothety
with center T bring P to P ′. We have that K,P,Q,L and P ′ are collinear and PB‖P ′C. Since
∠DQC + ∠APB = ∠DQC + ∠DP ′C = 180◦, we have DQCP ′ is cyclic. Therefore ∠QPB =
∠QP ′C = ∠QDC = 180◦ − ∠DQC − ∠QCD = ∠QCB. The conclusion follows.

5 Redefining Points

In this section, we build on an idea hinted at in Example 13. Sometimes a point may be defined
in a deliberately difficult way in a problem statement. This also was the case in Example 3. Often
the key to the solution is to find the “useful way” to define the point and prove that this is in fact
the same point. Specifically, if P is a point in the diagram that is difficult to deal with, it is often
best to define P ′ in some other way using a property we think is true of P and then prove that
P ′ = P . One thing to note is that this method requires that we have a property of P in mind.
Finding out what is true of P is usually the most difficult part of problems that can be solved using
this method. Sometimes working backwards is enough, but oftentimes some guesswork, intuition
and wishful thinking is necessary.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on a
circle in the diagram or is concyclic with other points in the diagram, that two lines are parallel or
perpendicular, or that two triangles are similar or congruent. It can be useful sometimes to try to
eyeball some of these from a well-drawn diagram. Here are is an example.

Example 18. An acute-angled triangle ABC is inscribed in a circle ω. A point P is chosen inside
the triangle. Line AP intersects ω at the point A1. Line BP intersects ω at the point B1. A
line ` is drawn through P and intersects BC and AC at the points A2 and B2. Prove that the
circumcircles of triangles A1A2C and B1B2C intersect again on line `.

We want to analyze the second intersection of the circumcircles of triangles A1A2C and B1B2C.
How much we can prove about this intersection Q varies greatly with how we define Q. First let’s
try defining Q directly as the intersection of the circumcircles of triangles A1A2C and B1B2C. From
this, we know that ∠CQB2 = 180◦ − ∠CB1B2 and ∠CQA2 = 180◦ − ∠CA1A2. What we want is
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to show that ∠CQB2 + ∠CQA2 = 180◦ which now is equivalent to ∠CB1B2 + ∠CA1A2 = 180◦.
However, this is not immediately true given the conditions in the problem. This doesn’t seem to
work. Let’s try a different way of defining Q.

Solution. Define Q′ as the intersection of the circumcircle of B1PA1 and `. From cyclic quadrilat-
erals, we have

∠B1Q
′P = ∠B1A1P = ∠B1CB2

which implies that Q′ is on the circumcircle of B1B2C. By a similar argument, we have that Q′ is
on the circumcircle of A1A2C. Together these imply that Q = Q′. Thus Q lies on `.

A solution can also be obtained by defining Q′ as the intersection of the circumcircle of B1B2C
and `. The way we define Q′ above can be motivated as follows. We want to define Q′ in some
way and then use this way to show it lies on circles. The cleanest way to do this is to show the
angle conditions for a cyclic quadrilateral. In order to get these angle conditions, one promising
approach is to define Q′ as the intersection of a circle with something, which in this case is `.

These next examples illustrate this same method applied in more situations. Particularly in
Example 19, it is hard to find a clean solution without the observations used to define P ′.

Example 19. (China 2012) In the triangle ABC, ∠A is biggest. On the circumcircle of ABC, let
D be the midpoint of arc ABC and E be the midpoint of arc ACB. The circle c1 passes through
A,B and is tangent to AC at A, the circle c2 passes through A,E and is tangent AD at A. Circles
c1 and c2 intersect at A and P . Prove that AP bisects ∠BAC.

If the result is true, then by the tangency conditions ∠APB = 180◦ − ∠BAC and ∠PBA =
180◦ −∠APB −∠PAB = 1

2∠BAC = ∠PAB. Therefore if the problem is true, then P lies on the
perpendicular bisector of AB. This gives us the hint to try defining P based on this. The method
below defines P ′ as the intersection of c1 and the perpendicular bisector of AB.

Solution. Let the center of c1 be O1 and let the center of c2 be O2. Since c1 is tangent to AC, it
follows that ∠BO1A = 2∠BAC. Since O1 and E both lie on the perpendicular bisector of AB,
it follows that O1E bisects angle ∠BO1A which implies that ∠BO1A = ∠BAC and hence that
∠BP ′E = 90◦ + 1

2∠BAC. However, since P ′ lies on the perpencular bisector EO1 of AB, A is
the reflection of B about EO1 and ∠AP ′E = ∠BP ′E = 90◦ + ∠BAC. Since c2 is tangent to AD
and passes through E, it follows that ∠AO2E = 2∠DAE = 180◦ − ∠BAC. Combining this with
the angle relation above yields that P ′ lies on c2. Hence P ′ lies on both c1 and c2 and P = P ′.
Therefore ∠BAP = 1

2∠BO1P = 1
2∠BAC which implies the result.

The next example really illustrates the power of redefining a point that is difficult to work with.
Here, a relatively simple restatement reduces the problem to simple angle chasing.

Example 20. (ISL 2002 G3) The circle S has centre O, and BC is a diameter of S. Let A be a
point of S such that ∠AOB < 120◦. Let D be the midpoint of the arc AB which does not contain
C. The line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA
meets S at E and at F . Prove that I is the incentre of the triangle CEF.

Solution. We first make several preliminary observations. Since EF is the perpendicular bisector of
OA, we have that AE = OE = OA and therefore AOE is equilateral. Similarly, we have that AOF
is equilateral which implies that ∠EOF = 120◦ and ∠ECF = 60◦. These results also imply that A
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is the midpoint of arc ÊF and CA bisects ∠ECF . After these preliminary observations, it becomes
difficult to work with the point I as defined. The key here is to redefine I to be easier to work
with. We now define I ′ to be the incenter of CEF with the goal of showing that ∠DAO = ∠AOI ′

since this would imply that OI ′‖AD and therefore I = I ′. At this point, the task becomes far
more feasible than before and reduces to angle chasing. First we note that ∠EOF = 120◦ and
∠EI ′F = 90◦ + ∠ECF/2 = 120◦ which implies that EI ′OF is cyclic. Now we carry out our
angle chasing methodically, attempting to eliminate points from consideration as we go. Note that
∠DAO = 90◦ −∠AOD/2 = 90◦ −∠ACB/2 = 45◦ + ∠ABC/2 = 45◦ + ∠AFC/2, which is enough
to eliminate D and B. Now note that ∠AOI ′ = ∠AOE+∠EOI ′ = 60◦+∠EFI = 60◦+∠EFC/2.
Since ∠AFC − ∠EFC = 30◦, we have that ∠DAO = ∠AOI ′, as desired.

A remarkably powerful way of redefining points is to try to identify them as the intersection of a
line or circle with another circle. This yields angle information that often leads to quick solutions.
To illustrate this, we outline the solution to what is possibly the hardest geometry problem on the
IMO in recent memory.

Example 21. (IMO 2011) Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent
line to Γ, and let `a, `b and `c be the lines obtained by reflecting ` in the lines BC, CA and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a, `b and `c is
tangent to the circle Γ.

Exhausting the diagram yields almost nothing promising. The main issue is that we know
almost nothing about the point of tangency. The key to the simplest solution to this problem is to
find a way to define this supposed point of tangency. We try intersecting circumcircles in order to
obtain angle information to prove that the point of intersection lies on Γ, the circumcircle of the
triangle determined by the three lines and prove that the circles are tangent at this point.

Solution. Let A′, B′ and C ′ be the intersections of `b and `c, `a and `c, and `a and `b, respectively.
Let P be the point of tangency between Γ and ` and let Q be the reflection of P through BC. Now
let T be the second intersection of the circumcircles of BB′Q and CC ′Q. It can be shown that T
lies on Γ and the circumcircle of A′B′C ′ by angle chasing. Similarly, T can be shown to be a point
of tangency between the circles by angle chasing. The angle chasing is made easier by first showing
that AA′, BB′ and CC ′ meet at the incenter I of A′B′C ′.

Example 22. (CMO 2013) Let O denote the circumcenter of an acute-angled triangle ABC. Let
point P on side AB be such that ∠BOP = ∠ABC, and let point Q on side AC be such that
∠COQ = ∠ACB. Prove that the reflection of BC in the line PQ is tangent to the circumcircle of
triangle APQ.

Here, we use the method above to define the reflection R of the point of tangency in line PQ
as the intersection of triangle OBP with side BC. This construction can be motivated either by
noticing this pattern in the diagram, noting that this method of intersecting circles obtains angles
in exactly the way needed to prove the result, or by trying to complete the Miquel configuration.

Solution. Let the circumcircle of triangle OBP intersect side BC at the points R and B and let
∠A, ∠B and ∠C denote the angles at vertices A, B and C, respectively. Now note that since
∠BOP = ∠B and ∠COQ = ∠C, it follows that

∠POQ = 360◦ − ∠BOP − ∠COQ− ∠BOC = 360◦ − (180− ∠A)− 2∠A = 180◦ − ∠A.
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This implies that APOQ is a cyclic quadrilateral. Since BPOR is cyclic,

∠QOR = 360◦ − ∠POQ− ∠POR = 360◦ − (180◦ − ∠A)− (180◦ − ∠B) = 180◦ − ∠C.

This implies that CQOR is a cyclic quadrilateral. Since APOQ and BPOR are cyclic,

∠QPR = ∠QPO + ∠OPR = ∠OAQ+ ∠OBR = (90◦ − ∠B) + (90◦ − ∠A) = ∠C.

Since CQOR is cyclic, ∠QRC = ∠COQ = ∠C = ∠QPR which implies that the circumcircle of
triangle PQR is tangent to BC. Further, since ∠PRB = ∠BOP = ∠B,

∠PRQ = 180◦ − ∠PRB − ∠QRC = 180◦ − ∠B − ∠C = ∠A = ∠PAQ.

This implies that the circumcircle of PQR is the reflection of Γ in line PQ. By symmetry in line
PQ, this implies that the reflection of BC in line PQ is tangent to Γ.

6 Know the Classical Configurations

There are a lot of classical geometry configurations and miscellaneous facts that can help in math
contests. Here is a selection of a few that seem to come up over and over again. Many more are
included in my other handout. Some of these are difficult and worthwhile to prove on your own.

1. Given a triangle ABC, the intersections of the internal and external bisectors of ∠BAC with
the perpendicular bisector of ABC lie on the circumcircle of ABC.

2. Facts related to the orthocenter H of a triangle ABC with circumcircle Γ and center O:

(a) If D is the point diametrically opposite to A on Γ and M is the midpoint of BC, then
M is also the midpoint of HD.

(b) If AH,BH and CH intersect Γ again at D,E and F , then there is a homothety centered
at H sending the triangle formed by projecting H onto the sides of ABC to DEF with
ratio 2.

(c) If D and E are the intersections of AH with BC and Γ, respectively, then D is the
midpoint of HE.

(d) If M is the midpoint of BC then AH = 2 ·OM .

(e) If BH and CH intersect AC and AB at D and E, and M is the midpoint of BC, then
M is the center of the circle through B,D,E and C, and MD and ME are tangent to
the circumcircle of ADE.

3. Facts related to the incenter I and excenters Ia, Ib, Ic of ABC with circumcircle Γ:

(a) If AI intersects Γ at D then DB = DI = DC, D is the midpoint of IIa, and IIa is a
diameter of the circle with center D which passes through B and C.

(b) If BI and CI intersect Γ again at D and E, then I is the reflection of A in line DE
and if M is the intersection of the external bisector of ∠BAC with Γ, then DMEI is a
parallelogram.

(c) If the incircle and A-excircle of ABC are tangent to BC at D and E, BD = CE.
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(d) If M is the midpoint of arc BAC of Γ, then M is the midpoint of IbIc and the center of
the circle through Ib, Ic, B and C.

4. (Symmedian) Given a triangle ABC such that M is the midpoint of BC, the symmedian
from A is the line that is the reflection of AM in the bisector of angle ∠BAC.

(a) If the tangents to the circumcircle Γ of ABC at B and C intersect at N , then N lies on
the symmedian from A and ∠BAM = ∠CAN .

(b) If the symmedian from A intersects Γ at D, then AB/BD = AC/CD.

5. (Apollonius Circle) Let ABC be a given triangle and let P be a point such that AB/BC =
AP/PC. If the internal and external bisectors of angle ∠ABC meet line AC at Q and R,
then P lies on the circle with diameter QR.

6. (Nine-Point Circle) Given a triangle ABC, let Γ denote the circle passing through the mid-
points of the sides of ABC. If H is the orthocenter of ABC, then Γ passes through the
midpoints of AH,BH and CH and the projections of H onto the sides of ABC.

7. (Feuerbach’s Theorem) The nine-point circle is tangent to the incircle and excircles.

8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle ABC,
then G lies on segment OH with HG = 2 ·OG.

9. (Euler’s Formula) Let O, I and Ia be the circumcenter, incenter and A-excenter of a triangle
ABC with circumradius R, inradius r and A-exradius ra. Then:

(a) OI =
√
R(R− 2r).

(b) OIa =
√
R(R+ 2ra).

10. Let ABC be a given triangle with incircle ω and A-excircle ωa. If ω and ωa are tangent to
BC at M and N , then AN passes through the point diametrically opposite to M on ω and
AM passes through the point diametrically opposite to N on ωa.

11. Let ABC be a triangle with incircle ω which is tangent to BC, AC and AB at D, E and F .
Let M be the midpoint of BC. The perpendicular to BC at D, the median AM and the line
EF are concurrent.

12. Let ABC be a triangle with incenter I and incircle ω which is tangent to BC, AC and AB
at D, E and F . The angle bisector CI intersects FE at a point T on the line adjoining the
midpoints of AB and BC. It also holds that BFTID is cyclic and ∠BTC = 90◦.

13. Let ABC be a triangle with incircle ω and let D and E be the points at which ω is tangent
to BC and the A-excircle is tangent to BC. Then AE passes through the point diametrically
opposite to D on ω.

14. Let ABC be a triangle with A-excenter IA and altitutde AD. Let M be the midpoint of AD
and let K be the point of tangency between the incircle of ABC and BC. Then IA,K and
M are collinear.
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15. Let ABCD be a convex quadrilateral. The four interior angle bisectors of ABCD are
concurrent and there exists a circle Γ tangent to the four sides of ABCD if and only if
AB + CD = AD +BC.

16. (Simson Line) Let M , N and P be the projections of a point Q onto the sides of a triangle
ABC. Then Q lies on the circumcircle of ABC if and only if M , N and P are collinear. If Q
lies on the circumcircle of ABC, then the reflections of Q in the sides of ABC are collinear
and pass through the orthocenter of the triangle.

17. (Butterfly Theorem) Let M be the midpoint of a chord XY of a circle Γ. The chords AB
and CD pass through M . If AD and BC intersect chord XY at P and Q, then M is also
the midpoint of PQ.

18. (Mixtilinear Incircles) Let ABC be a triangle with circumcircle Γ and let ω be a circle tangent
internally to Γ and to AB anc AC at X and Y . Then the incenter of ABC is the midpoint
of segment XY .

19. (Curvilinear Incircles) Let ABC be a triangle with circumcircle Γ and let D be a point on
segment BC. Let ω be a circle tangent to Γ, DA and DC. If ω is tangent to DA and DC at
F and E, then the incenter of ABC lies on FE.

20. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a
circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.

7 Problems

I have grouped the problems into three difficulty classes: A, B and C. These are loosely supposed
to reflect the difficulty of Problems 1, 2 and 3 at the IMO. However, some of the harder A problems
are similar in difficulty to IMO # 2’s and some of the harder B problems are similar to IMO # 3’s.

A1. (Japan 2012) Let ABC be a given triangle. The tangent to the circumcircle at A intersects
the line BC at P . Let Q and R be the reflections of the point P across the lines AB and
AC, respectively. Prove that the line BC is perpendicular to the line QR.

A2. (APMO 2007) Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB > AC. Let I
be the incenter, and H the orthocenter of the triangle ABC. Prove that 2∠AHI = 3∠ABC.

A3. (Russia 2010) Let ABC be a given triangle and let K be a point on the internal bisector of
∠BAC. The line CK intersects the circumcircle ω of triangle ABC at M 6= C. The circle Ω
passes through A, touches CM at K and intersects segment AB at P 6= A and ω at Q 6= A.
Prove, that P , Q and M are collinear.

A4. (Russia 2007) A line, which passes through the incenter I of the triangle ABC, meets its sides
AB and BC at the points M and N , respectively. The points K,L are chosen on the side
AC such that ∠ILA = ∠IMB and ∠IKC = ∠INB. If the triangle BMN is acute, prove
that AM +KL+ CN = AC.

A5. (Japan 2011) Let ABC be a given acute triangle and let M be the midpoint of BC. Draw the
perpendicular HP from the orthocenter H of ABC to AM . Show that AM · PM = BM2.
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A6. (CMO 1997) The point O is situated inside the parallelogram ABCD such that ∠AOB +
∠COD = 180◦. Prove that ∠OBC = ∠ODC.

A7. (Russia 2012) The points A1, B1 and C1 lie on the sides BC,CA and AB of the triangle
ABC, respectively. Suppose that AB1 −AC1 = CA1 −CB1 = BC1 −BA1. Let OA, OB and
OC be the circumcenters of triangles AB1C1, A1BC1 and A1B1C respectively. Prove that the
incenter of triangle OAOBOC is the incenter of triangle ABC.

A8. (Russia 2012) Consider the parallelogram ABCD with obtuse angle A. Let H be the foot
of perpendicular from A to the side BC. The median from C in triangle ABC meets the
circumcircle of triangle ABC at the point K. Prove that points K,H,C,D lie on the same
circle.

A9. (Russia 2006) Let K and L be two points on the arcs AB and BC of the circumcircle of
a triangle ABC, respectively, such that KL is parallel to AC. Show that the incenters of
triangles ABK and CBL are equidistant from the midpoint of the arc ABC of the circumcircle
of triangle ABC.

A10. (Russia 2016) The medians AMA, BMB and CMC of triangle ABC intersect at M . Let ΩA

be the circle passing through the midpoint of AM and MB and MC . Define ΩB and ΩC

analogously. Prove that ΩA,ΩB and ΩC have a common point.

A11. (Russia 2002) Let O be the circumcenter of a triangle ABC. Points M and N are chosen on
sides AB and AC, respectively, and such that ∠MON = ∠BAC. Prove that the perimeter
of triangle AMN is not less than the length of side BC.

B1. (2007 G3) The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between
the parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P
and Q. Prove that ∠BQP = ∠DAQ.

B2. (Russia 2002) Diagonals AC and BD of a cyclic quadrilateral ABCD meet at point O. The
circumcircles of triangles AOB and COD intersect again at K. The point L is such that the
triangles BLC and AKD are similar and equally oriented. Prove that if quadrilateral BLCK
is convex, then it has an inscribed circle.

B3. (Russia 2002) Let ABC be a given triangle. Let `a be the line parallel to the internal bisector
of angle ∠A passing through the point at which the excircle opposite vertex A is tangent to
side BC. Define `b and `c analogously. Prove that `a, `b and `c are concurrent.

B4. (Russia 2011) The perimeter of a given triangle ABC is 4. The point X lies on ray AB and
point Y lies on ray AC such that AX = AY = 1. If the line XY intersects segment BC at
the point M , prove that the perimeter of one of the triangles ABM or ACM is 2.

B5. (Japan 2012) Let triangles PAB and PCD be such that PA = PB, PC = PD, P,A,C are
collinear in that order and B,P,D are collinear in that order. The circle S1 passes through A
and C and intersects with the circle S2 passing through B and D at distinct points X and Y .
Prove that the circumcenter of the triangle PXY is the midpoint of the segment adjoining
the centers of S1 and S2.
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B6. (Japan MO 2009) Let Γ be the circumcircle of a triangle ABC. A circle with center O
touches to line segment BC at P and touches the arc BC of Γ which doesn’t have A at Q. If
∠BAO = ∠CAO, then prove that ∠PAO = ∠QAO.

B7. (Russia 2012) The point E is the midpoint of the segment connecting the orthocenter of the
scalene triangle ABC and the point A. The incircle of triangle ABC incircle is tangent to
AB and AC at points C ′ and B′, respectively. Prove that point F , the point symmetric to
point E with respect to line B′C ′, lies on the line that passes through both the circumcenter
and the incenter of triangle ABC.

B8. (1995 G8) Suppose that ABCD is a cyclic quadrilateral. Let E be the intersection of AC and
BD and let F be the intersection of AB and CD. Denote by H1 and H2 the orthocenters of
triangles EAD and EBC, respectively. Prove that the points F , H1, H2 are collinear.

C1. (Russia 2011). Let M be the midpoint of side BC of a triangle ABC and N be the midpoint
of arc BAC of the circumcircle of the triangle. Prove that the points A, N and the incenters
of triangles ABM and ACM are concyclic.

C2. (Mathlinks) Let ABCD be an isosceles trapezoid with AD parallel to BC. The circle ω is
tangent to segments AB and AC and to the circumcircle of ABCD at the point M . Let the
incircle of triangle ABC be tangent to BC at P . Prove that D, P and M are collinear.

C3. (Japan 2001) Suppose that ABC and PQR are triangles such that A and P are the midpoints
of QR and BC, respectively. If QR and BC are the internal bisectors of ∠BAC and ∠QPR,
respectively, prove that AB +AC = PQ+ PR.

C4. (CGMO 2011) The A-excircle of triangle ABC is centered at I and is tangent to BC at M .
The points D and E lie on rays AB and AC and satisfy that DE is parallel to BC. The
incircle of triangle ADE is centered at J and tangent to DE at N . If BI and DJ intersect
at F and C and EJ intersect at G, prove that the midpoint of FG lies on MN .

C5. (Russia 2006) Let ABC be an acute-angled triangle with incenter I. The lines BI and CI
meet sides AC and AB at B1 and C1, respectively. If the line B1C1 meets the circumcircle
of ABC at M and N , prove that the circumradius of triangle MIN is twice that of ABC.

C6. (ISL 2004 G7) For a given triangle ABC, let X be a variable point on the line BC such that
C lies between B and X and the incircles of the triangles ABX and ACX intersect at two
distinct points P and Q. Prove that the line PQ passes through a point independent of X.

C7. (ISL 2012 G6) Let ABC be a triangle with circumcenter O and incenter I. The points
D,E and F on the sides BC,CA and AB respectively are such that BD + BF = CA and
CD + CE = AB. The circumcircles of the triangles BFD and CDE intersect at P 6= D.
Prove that OP = OI.

C8. (ISL 2002 G7) The incircle Ω of the acute-angled triangle ABC is tangent to its side BC at a
point K. Let AD be an altitude of triangle ABC, and let M be the midpoint of the segment
AD. If N is the common point of the circle Ω and the line KM (distinct from K), then prove
that the incircle Ω and the circumcircle of triangle BCN are tangent to each other at the
point N .
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C9. (RMM 2011) A triangle ABC is inscribed in a circle ω. A variable line ` chosen parallel to
BC meets segments AB, AC at points D, E respectively, and meets ω at points K, L (where
D lies between K and E). Circle γ1 is tangent to the segments KD and BD and also tangent
to ω, while circle γ2 is tangent to the segments LE and CE and also tangent to ω. Determine
the locus, as ` varies, of the meeting point of the common inner tangents to γ1 and γ2.
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8 Hints

If there is a theorem or fact that is useful, I have tried to indicate it with the label TL.

A1. If Q′ and R′ are the midpoints of PQ and PR, respectively, prove that Q′R′ is perpendicular
to BC.

A2. Angle chase completely and look for cyclic quadrilaterals.

A3. Angle chase completely.

A4. Consider the reflection of M in line AI and the reflection of N in line CI.

A5. Consider the feet Q and R of the perpendiculars from H to AB and AC, respectively. What
can be said about the relationship between MQ, MR and the circumcircle of triangle AHP .

A6. Consider the translation mapping AB to CD. Complete the picture.

A7. Consider the projections D, E and F from the incenter I of triangle ABC to sides BC,
AC and AB, respectively. What can be said about the lengths DA1, EB1 and FC1? Can
you, from here, prove something useful about the quadrilateral AB1C1I? TL: lengths of the
segments adjoining the vertices of a triangle to the tangency points of its incenter, the angle
bisector and opposite perpendicular bisector meet on the circumcircle of a triangle.

A8. Consider the point E such that KHBE is a rectangle. Notice the information we use about
K to solve the problem. Is there a way to solve the problem without the point E?

A9. Let the midpoint of arc ABC be M and let the incenters of ABK and CBL be I1 and I2,
respectively. Extend BI1 and BI2 to intersect the circumcircle of ABC. Can you prove that
two triangles are congruent? TL: in a triangle XY Z with incenter I, the circumcenter of
XY I lies on the circumcircle of XY Z.

A10. Define the intersection of two of the circles. Angle chase from here.

A11. Consider rotating triangles AMO and ANO about O. Can you create a figure which imme-
diately implies the desired result?

B1. Consider the homothety mapping BC to DA with center P .

B2. Consider the point I such that trianglesKIC and ABC are similar and equally oriented. Show
that I lies on the bisectors of angles ∠BKC, ∠KBL and ∠KCL. TL: the unique center of
spiral similarity sending A to B and C to D is the second intersection of the circumcircles of
ACP and BDP where AB and CD intersect at P , if triangles OXY and OZW are similar
and equally oriented then triangles OXZ and OYW are similar and equally oriented.

B3. Prove that the lines passing through the tangency points of the incircle to the three sides and
parallel to the triangle’s angle bisectors are concurrent. Prove that the lines passing through
the midpoints of the sides and parallel to the triangle’s angle bisectors are concurrent. How
does this imply the desired result? TL: the midpoint of the segment adjoining the points of
tangency of the incircle and the excircle to a side of a triangle is the midpoint of that side of
the triangle.
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B4. Find two circles that XY is the radical axis of. Note that a circle can have radius 0. TL:
radical axis theorem, the radical axis of two circles passes through the midpoints of all common
tangents to the two circles.

B5. Calculate the distances from X and Y to the midpoint of the segment adjoining the centers
of S1 and S2 in terms of the radii of the circles. Find a clean way to show that this is also
the distance from P to this point. TL: Stewart’s Theorem or Cosine Law.

B6. Introduce the midpoints of both arcs between B and C. What is the desired result equivalent
to in terms of the quadrilateral APOQ?

B7. Consider the reflection A′ of A in B′C ′ and note that A′F is parallel to AO.

B8. Try to overlay the similar triangles FAD and FCB and complete the picture in terms of H1

and H2. Is there now a complete the transformation-style argument?

C1. Reflect the incenter of ABM about the line MN and apply the trigonometric form of Ceva’s
Theorem. TL: trigonometric form of Ceva’s Theorem or the existence of isogonal conjugates.

C2. Let I be the incenter of triangle ABC and let Q and R be the midpoints of BI and CI,
respectively. Consider the second intersection of the circumcircles of triangles BQP and
CRP . TL: Pascal’s Theorem or inversion.

C3. Let the perpendicular bisector of QR intersect BC at D and let the perpendicular bisector of
BC intersect QR at E. Let the perpendicular bisectors of BC and QR intersect each other
at X. Use triangle XDE to find the ratio DP/AE in terms of the angles ∠A and ∠P . TL:
the intersection of an angle bisector of a triangle and its opposite perpendicular bisector lies
on the circumcircle of the triangle.

C4. Let OB intersect O1D at P and let OC intersect O1E at Q. Prove that PQ is parallel to
BC. Prove that if S is the internal center of homothety between the circles (O) and (O1),
then P , F and S are collinear and Q, G and S are collinear. Now use the fact that the line
adjoining the midpoints of MN and OO1 is perpendicular to BC. TL: Ceva’s Theorem.

C5. Let IB and IC be the B and C excenters of ABC. Prove that IBMINIC is cyclic. TL: the
nine-point circle.

C6. Prove as a lemma that given a triangle ABC, the bisector of ∠ABC, the line joining the
midpoints of AB and AC, and the line through the points of tangency between the incircle
and BC and AC are concurrent.

C7. Consider the midpoint M of arc FD on the circumcircle of BFD. Prove that M and I have
the same power of a point with respect to the circumcircle of ABC. Do the same for the
circumcircles of CED and AFE.

C8. Prove that KM passes through the A-excenter of ABC. Now use the fact that if X lies on
the polar from Y to Ω then Y lies on the polar from Ω (pole-polar).

C9. Invert about A with power AK ·AL.
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